
Enhancing Operational Efficiency through the Integration of CI/CD

and DevOps in Software Deployment

Partha Sarathi Chatterjee

Scholar, Master of Computer Science

Liverpool John Moores University (LJMU, UK)

Email: parthastudent@yahoo.co.in

Harish Kumar Mittal
Thesis Supervisor, Upgrad Education, India,

Principal, BM Institute of Engineering and Technology,

Sonepat, India

Email: harish_mittalin@yahoo.co.in

Abstract - In the rapidly evolving digital era, the complexity
and dynamic nature of software applications have significantly
increased, driven by ever-changing consumer and business
requirements. This shift poses a challenge to traditional software
development and deployment methodologies, which often
struggle to keep pace with these rapid changes. This paper
explores the transition from conventional methods to agile
methodologies, emphasizing their critical role in maintaining
application stability and facilitating seamless updates with
minimal impact on end-users. Central to this study is the
examination of automated deployment models, particularly
Continuous Integration/Continuous Deployment (CI/CD), and
their transformative impact on the software deployment
process. The research delves into the intricacies of the DevOps
lifecycle, highlighting the importance of various environments
such as Development (Dev), Testing (Test), and Production
(Prod). These environments are crucial in ensuring that any
updated version of an application is rigorously tested and free of
bugs before its deployment in a production setting. Through a
comprehensive case study conducted in an AWS lab
environment, this paper demonstrates the effectiveness of
automated deployment models in overcoming the limitations
inherent in manual deployment processes. The findings reveal
significant improvements in operational efficiency, product
quality, and customer satisfaction. The study also discusses the
broader implications of these findings, including the necessity
for businesses to adopt modern, agile deployment strategies to
stay competitive and responsive in the digital landscape. This
research contributes to the understanding of how automated
deployment strategies, underpinned by CI/CD and DevOps
practices, can revolutionize software development processes. It
provides valuable insights for organizations looking to enhance
their software deployment methodologies, ultimately leading to
improved business outcomes and customer experiences in the
digital age.

Keywords: Automated Deployment, CI/CD, DevOps, Agile
Methodologies, Software Application Complexity, Digital
Transformation.

I. INTRODUCTION

The transition to a digital lifestyle has fundamentally

reshaped market needs. Activities ranging from grocery

shopping to booking medical appointments have been

simplified to a mere click, thanks to modern software

applications. This digital convenience, however, brings forth

significant challenges for the IT industry, tasked with meeting

the escalating demands of an increasingly digital populace.

In the early days of computing, software applications were

limited in scope and complexity, catering to specific,

unchanging requirements. Today, the landscape is vastly

different. The IT industry confronts the dual challenge of not

only scaling these applications to serve a growing user base

but also ensuring their stability. This necessitates a dynamic

and robust model for rapid enhancement and feature addition,

all while maintaining application integrity.

CI/CD and DevOps: Revolutionizing Deployment: The

advent of Continuous Integration/Continuous Deployment

(CI/CD) within the DevOps framework has been

transformative, enabling automated deployment and testing

with minimal human intervention. This innovation ensures

swift, error-free application delivery, addressing the

industry's need for speed and reliability in software

deployment [1]

The Shift in Software Development Paradigm:
The last decade has witnessed a paradigm shift in software

development, moving from Software as a Product (Saab) to

Software as a Service (SaaS). This transition represents a

move from single-instance software on customer machines to

shared instances running on cloud platforms, reflecting the

evolving nature of software consumption and delivery [2]

Containerization in Agile Environments: In agile

environments, the need for applications to be scalable,

performant, and highly available is paramount. To meet these

requirements, containerization has emerged as a widely

adopted strategy in the IT industry. Particularly in cloud-

based Software as a Service (SaaS) environments, where

release cycles are frequent and demanding, containers offer

an efficient solution. Their growing popularity is attributed to

their ability to provide isolated, consistent, and efficient

environments for application deployment, making them ideal

for both cloud computing and high-performance computing

scenarios [3]
The Essence of CI/CD in Software Development:
Continuous Integration and Delivery (CI/CD) have become

fundamental to the software development process.

Continuous Integration (CI) involves the creation and testing

of deployable artifacts from source code, encompassing

activities like compilation, code quality checks, and unit tests.

Continuous Delivery (CD) extends this process to include the

deployment of these artifacts to a production system,

following successful integration and testing. The overarching

goal of CI/CD is to expedite the process from code changes

to deployment, significantly reducing the time to deliver

updates and new features [4].

CI/CD: A Paradigm Shift in Development Practices:
CI/CD represents a paradigm shift in software development

practices. It requires developers to frequently merge their

code changes into a shared version control repository, with

each check-in being verified by an automated build. This

173

2024 Sixth International Conference on Computational Intelligence and Communication Technologies (CCICT)

979-8-3503-7462-9/24/$31.00 ©2024 IEEE
DOI 10.1109/CCICT62777.2024.00038

approach enables early detection of problems and ensures that

the process of releasing small sets of feature changes is

visible, traceable, and largely automated. The CI/CD pipeline

orchestrates the build, test, and deployment of software across

various environments, culminating in production

deployment. This method contrasts sharply with traditional

practices where developers-built application features in

isolation and submitted them separately, often leading to

integration challenges [5]

A CI/CD pipeline refers to the largely automated process of

integrating committed changes to the code, testing, and then

moving the code from the commit stage to the production

stage Frequent but small (merge) commits are encouraged

Indeed, a large-scale analysis conducted by Zhao et al.

determined around 21 (median) commits are made per day for

575 open-source projects [6]

In the past decade, a great shift occurred in software

development from creating Software as a Product (Saab),

which is executed as a single instance on customers’

machines, towards providing Software as a Service (SaaS)

where many users share instances that run on cloud. This shift

underscores the need for more dynamic, scalable, and cloud-

compatible development practices [2]

A. Problem Statement
The core of this research is to delve deeply into the DevOps

methodology, utilizing a business case study to illustrate its

effectiveness in overcoming the challenges associated with

traditional manual deployment processes. The study will

dissect the essential components of the DevOps methodology,

which include Continuous Planning, Contentious Integration,

Continuous Delivery and Continuous Monitoring.

1) Continuous Planning:

The dynamic nature of modern software applications, such as

a food delivery service, necessitates continuous planning to

incorporate new features and updates. This approach allows

for agility in adapting to changing market demands and

customer preferences, ensuring the application remains

relevant and competitive[5]

2) Contentious Integration (CI)

CI is a critical process in DevOps, where developers merge

their changes into a central repository, triggering automatic

builds and tests. This automated approach contrasts with

manual deployment and testing, which are time-consuming

and prone to errors. CI streamlines the development process,

enhancing efficiency and reducing the likelihood of

miscommunications and errors. Some popular CI tools are

available in the present market and their major differences are

Jenkins, Bamboo and TeamCity.

3) Continuous Delivery

Following CI, the focus shifts to deploying the application

into various pre-production environments, such as DEV, QA,

and STAGE.

Fig .1. Comparing the Jobs on Stack overflow for various

integration tools [7]

This step ensures that the new release is thoroughly tested and

free from bugs before final deployment. Continuous Delivery

automates this process, significantly reducing the time and

effort required compared to manual deployment methods.

Some Configuration Management tools are Chef , Puppet,

Ansible and Saltstack.

Tools used in CI/CD can be specialized for a particular stage

of the pipeline (standalone), such as integration or

deployment, or can combine both phases into a single tool that

can be used for the entire pipeline (integrated). Many of the

popular tools used today are primarily CI solutions that are

now being retrofitted to also focus on cloud-based

deployments. [6]

Fig .2. Comparing the number of forks for various

deployment tools [7]

4) Continuous Monitoring:

Once deployed, continuous monitoring is essential to

maintain the application's performance and stability. This

involves proactive monitoring to quickly address any issues,

ensuring uninterrupted service to end-users. Continuous

Monitoring is crucial in environments where applications are

frequently updated and expanded with new features [8]

174

B. Aims and Objectives:
The study aims to highlight the limitations and challenges of

manual deployment in the current business landscape and

explore how automated strategies can effectively address

these issues.

Objectives -
� To Critically Evaluate Manual Deployment

Strategies: A detailed examination of existing

manual deployment strategies, identifying and

analyzing the key challenges and inefficiencies they

present in a modern business context.

� To Explore Automated Deployment Strategies:
Understanding automated deployment methods,

especially CI/CD pipelines, and assessing their

potential in overcoming the limitations identified in

manual deployment processes.

� Conducting AWS-Based Experimental Analysis:
Implement within an AWS cloud environment to

showcase the application and effectiveness of

automated deployment strategies.

� Evidence-Based Evaluation: Systematically gather

and analyze empirical data from the experiment to

demonstrate how automation can address and

mitigate the inherent challenges of manual

deployment processes.

C. Significance of the Study
As software applications grow in complexity, the industry

faces the dual challenge of timely feature releases and

maintaining application stability. Miscommunication

between development and operations teams often exacerbates

these challenges, leading to production issues and potential

business disruptions. This research is significant for its focus

on analysing the limitations of manual deployment processes

in this high-stakes environment. Key areas of investigation

include:

� Efficiency in Feature Release: Assessing how

manual deployment may hinder timely updates,

impacting business responsiveness and

competitiveness.

� Reduction of Miscommunication Risks:
Exploring the role of manual processes in

operational errors and inefficiencies due to team

miscommunications.

� Advantages of Automated Deployment:
Demonstrating the potential of automation,

particularly through CI/CD pipelines, to streamline

deployment, reduce errors, and enhance overall

operational effectiveness.

This study aims to provide valuable insights into optimizing

deployment strategies in cloud computing, offering practical

solutions to current industry challenges.

D. Scope of the study
This research focuses on analyzing the limitations of manual

application deployment and the advantages of transitioning to

automated deployment methods, especially CI/CD pipelines.

The study aims to:

1. Identify Key Challenges in Manual Deployment:

� Assessing impacts on customer retention,

meeting business deadlines, and potential

revenue losses.

� Evaluating the competitive disadvantages due

to slower delivery and inefficiencies in service

delivery.

� Analyzing risks of manual errors,

miscommunication, and difficulties in version

rollback.

2. Explore Benefits of Automated Deployment:

� Conducting a comparative analysis to

understand how automation can address these

challenges.

� Highlighting improvements in operational

efficiency, error reduction, and customer

service responsiveness.

The scope is to empirically demonstrate how automated

deployment can enhance business processes in software

development and cloud computing, offering a clear contrast

to manual methods.

E. Structure of the Paper
This Section includes A brief background details about the

rapid changing in the IT industry and its demands. We also

discussed the problem statement briefly which we are going

to see in detail in the upcoming sections. We covered the

significance of our study which is to analyse everything from

a business point of view and about the scope of the study. This

research paper is organized into the following sections to

provide a thorough exploration of the transition from manual

to automated deployment strategies in cloud computing:

Literature Review - This section reviews existing literature,

examining the evolution of deployment strategies, the

development of CI/CD practices, and previous research on

manual versus automated deployment processes.

Methodology - Here, the research methodology is outlined,

including the design of the AWS-based experimental setup,

data collection methods, and the approach for the

comparative analysis between manual and automated

deployment.

Experimental Setup and Analysis - This section presents

experimental study and a detailed case study that illustrates

the practical application of CI/CD pipelines in a business

175

environment, along with an analysis of the results obtained

from the experimental setup.

Research Outcome and Analysis - In this section, the

findings from the case study and experimental analysis are

discussed, comparing these results with existing literature and

highlighting their implications for the IT industry.

Conclusion and Future Work - The final section

summarizes the key findings of the research, discusses its

implications, and suggests areas for future research. It also

reflects on the broader impact of automated deployment

strategies in the field of cloud computing.

II. LITERATURE REVIEW

In this section, we explore the concept of DevOps and its

advantages over the traditional waterfall model. We examine

various research works to understand and analyze the benefits

of the DevOps methodology. As the demand for software

applications grows, the need for a dynamic deployment

strategy becomes crucial. A strategy that ensures timely

delivery and contributes significantly to maintaining

application quality is essential. We will delve into why

DevOps is instrumental in fulfilling these requirements.

A. DevOps Conception
DevOps represents a paradigm shift in the IT industry,

bridging the gap between developers focused on automated

development and operations teams concentrated on

automated deployment and monitoring systems. DevOps

fosters an organizational shift where both teams work closely

as a single unit, delivering faster and reducing

communication gaps [9]. The primary goal of DevOps is to

minimize the divide between developers and operations

teams, promoting continuous high-quality service delivery

[10]

Buttar et al. (2023) discuss how DevOps enables enterprises

to deliver high-quality software capabilities efficiently. This

study focuses on the use of DevOps for cloud application

deployment, emphasizing cost, memory, and CPU capacity

optimizations. [11]

Here is a graphical representation of how DevOps

methodology works and we will discuss each step-in detail

Fig .3. DevOps life cycle

The DevOps lifecycle, as illustrated in the diagram,

encompasses stages like plan, code, build, and test, falling

under Continuous Integration (CI). We categorize tasks for

the CI section into major categories:

Continuous Planning

Continuous planning is vital for designing and planning

customer requirements before building the software. In agile

methodology, accommodating all requirements concurrently

may not be feasible, but a set of requirements can be

addressed in each sprint. This approach allows for feedback

and adjustments based on customer satisfaction with

delivered features.[12]

Continuous coding and building
After analyzing and identifying requirements, the next stage

is continuous coding and building, where developers add new

code to meet the evolving requirements.

Continuous Testing
As new features and code modifications are added,

continuous testing becomes crucial. Testers perform unit and

integration testing to ensure each new feature functions

correctly and the entire application operates as intended.

Continuous Release
Following successful code pushes and testing, the next step is

to release new artifacts with required changes. These artifacts

are typically stored in an artifact repository before

deployment.

Continuous Delivery/ Continuous Development
This stage involves deciding on strategies to deploy the

application in various environments. Continuous Delivery

and Continuous Deployment differ in their approach to

deployment [10]. Ali (2023) explores the integration of

DevOps and CI/CD in software development, highlighting

how this combination streamlines processes and enhances

release efficiency. They highlighted collaborative benefits of

DevOps and CI/CD, as well as the challenges associated with

their implementation. [13].

Continuous Deployment
In these delivery strategies, there is no manual intervention

required and the build artifact is directly deployed into the

infrastructure. Once the developer modifies the code or adds

any new feature. the new artifact is directly deployed. Now,

in most cases, the artifact is deployed in lower-level

environments such as sandbox or pre-production. Then after

rigorous testing, once all teams are satisfied, they migrate the

code into a production environment [10]. Salameh's provides

insights into the elements of DevOps relevant to automation,

visibility, and control practices. [14]

Continuous Delivery
Continuous Delivery automates the build and artifact

formation, but manual approval is required before production

deployment. This strategy is commonly used, where

development and testing teams review the outcome before

approving deployment [15].
Continuous Operation and Monitoring
Post-deployment, maintaining the stability and uptime of the

application is crucial. The IT operations team handles

reactive and proactive faults, ensuring minimal downtime and

impact on end-users. Continuous monitoring and logging are

176

employed to proactively identify and resolve issues,

preventing production outages.

The study by Bhattacharya and Mittal [17] delves into the

intricate dynamics of container runtimes within Kubernetes

clusters, offering a nuanced exploration of their performance

metrics. They highlighted the critical role these runtimes play

in optimizing containerized applications, thereby

underpinning the operational efficiencies pivotal to modern

software deployment strategies. This investigation not only

broadens the understanding of container runtime capabilities

but also provides a foundational basis for future research

aimed at enhancing the agility and responsiveness of cloud-

native technologies

B. Popular Tools in DevOps
DevOps methodology relies on a stack of technical tools

fitting into various stages of the process. Kupale and Powar

(2023) discuss how Azure DevOps supports efficient

software development, deployment, and maintenance. This

study illustrates the practical application of DevOps in

creating efficiency and improving communication in software

development. [16]. We will explore the roles of these tools in

DevOps.

 Figure 4. Tools used in DevOps

The diagram showcases popular tools in DevOps. We will

examine some of these tools:

� Git - A Version Control System (VCS)

allowing multiple users to share code within a

team.

� Eclipse - An IDE widely used for coding,

supporting various languages through plugins.

� Jira - a versatile tool used for bug tracking,

agile project management, and change

management ticketing.

� Maven/Gradle - used for building artifacts

after coding, facilitating the creation of

deployable software components.

� Junit /Se - used for running test cases, including

unit and integration testing.

� Jenkins /Bamboo - These tools are crucial for

building CI/CD pipelines, automating stages

like build, test, release, and deploy without

manual intervention [4]

� Puppet/Chef/Ansible/SaltStack - These are

configuration management tools used for tasks

like server patching or application installation

across multiple servers.

� Nagios/Splunk/Sensu - These tools are used

for proactive monitoring, detecting faults early

to prevent server damage or outages.

This section discussed various DevOps concepts and their

role in agile deployment strategies. We analyzed the major

components of DevOps, including Continuous Integration

and Continuous Delivery, and the differences between them.

We also examined the steps involved in Continuous

Integration and Continuous Deployment, along with the tools

and applications used in each step of DevOps across business

units.

III. RESEARCH METHODOLOGY

This research undertakes a comparative analysis between

manual deployment and automated deployment using CI/CD

methodologies. The analysis will be anchored around a

hypothetical business case study, illustrating the impact of

persisting with manual deployment processes. We will

identify and scrutinize the challenges faced in manual

deployment and demonstrate how these can be effectively

addressed through automated CI/CD strategies.

Evaluating Business Impact Through Defined Metrics:
The analysis will focus on specific metrics that are commonly

impacted by deployment strategies:

1. Loss of Existing Customer Base: Assessing how

manual deployment affects customer retention.

2. Missing Business Deadlines: Evaluating the impact

on project timelines.

3. Losing Business Revenues: Analyzing the financial

implications of inefficient deployment.

4. Slower Delivery Compared to Competitors:
Measuring the pace of deployment against industry

standards.

5. Inefficiency in Delivery Model: Examining the

operational delays and customer service

implications.

6. Manual Errors and Miscommunication:
Investigating the time and efficiency lost due to

manual processes.

7. Challenges in Version Rollback: Understanding

the complexities involved in reverting to previous

versions in manual setups.

177

A. AWS Lab Setup for Deployment
To comprehensively understand and compare the automated

and manual deployment processes, we will construct a

laboratory environment within AWS. This lab will serve as a

controlled setting for deploying a sample application,

enabling us to directly observe and measure the efficiencies

and challenges of each deployment method.

Fig .5. Lab diagram

The diagram provides a visual representation of the lab setup,

detailing the infrastructure components and their

interconnections within the AWS environment.

B. Result or Outcome
The results from the lab experiment will be analyzed against

the predefined setback metrics to evaluate the effectiveness

of automated deployment. Key outcomes include:

1. Loss of Existing Customer Base: Demonstrating

how automation enhances project delivery timelines,

thereby improving customer satisfaction and

retention.

2. Missing Business Deadlines: Showcasing the

efficiency of automated pipelines in meeting project

deadlines with minimal manual intervention.

3. Losing Business Revenues: Illustrating the

reduction in service penalties due to adherence to

SLAs through automated processes.

4. Competitive Delivery Speed: Highlighting how

structured and automated deployment accelerates

delivery, outpacing manual methods.

C. Tools Used
The experiment will utilize a suite of tools within the AWS

cloud platform, each playing a critical role in the deployment

pipeline:

1. GitHub: Serving as the code repository.

2. Maven: Used for building and testing the

application.

3. Docker: Creating the final application artifact as a

Docker image.

4. Docker Registry: Acting as the repository for

Docker images.

5. Jenkins: Automating the CI/CD pipeline,

facilitating build, test, and deployment phases.

6. Kubernetes (EKS): Hosting the application within

a managed Kubernetes cluster.

This study will delve into the drawbacks of manual

deployment processes, using the AWS lab to demonstrate

how these challenges are mitigated through an automated

CI/CD pipeline. The discussion will focus on the tangible

improvements observed in the lab experiment, correlating

them with the broader research objectives.

This section summarizes the research methodology, including

the lab setup and the tools employed. It outlines the expected

outcomes of the experiment; particularly how automated

deployment strategies can mitigate common drawbacks

associated with manual processes. The summary ties back to

the initial research objectives, setting the stage for a

comprehensive analysis of the results.

IV. EXPERIMENTAL ANALYSIS AND IMPLEMENTATION

We will establish a laboratory environment within AWS to

conduct our experiment. This lab will simulate real-world

deployment scenarios, enabling us to compare the efficacy of

manual versus automated deployment processes. The

diagram in Fig. 5 provides a detailed visual representation of

our AWS lab setup. It illustrates the infrastructure

components, including computing resources, networking

setup, and their interconnections, crucial for understanding

the experimental environment.

A. Integration and Automation in the CI/CD Pipeline
Our experiment begins with storing sample Java code in

GitHub, our chosen Version Control System (VCS). The

integration of GitHub with Jenkins is key to triggering

automated builds using Maven whenever code modifications

occur.

During the build process, SonarQube will automatically

assess code quality, ensuring it meets predefined standards.

Subsequently, a Docker Image is created and stored in the

Docker Registry, marking the completion of the Continuous

Integration (CI) phase.

In the CD phase, the Docker image is deployed into

Kubernetes, specifically Elastic Kubernetes Service (EKS),

using Helm Charts for deployment orchestration. Jenkins

automates these tasks, including helm chart creation and

Docker image deployment into the Kubernetes Pod, ensuring

a seamless and manual-intervention-free process.

Upon a new code push to the repository, the entire process

from Docker image creation, code quality checking, to

deployment in a Kubernetes pod, is executed automatically.

178

This automation highlights the efficiency and speed of the

CI/CD pipeline in contrast to manual deployment methods.

Fig .6. AWS Topology

The AWS topology diagram (Fig. 6) illustrates how the Pet

Clinic application will be deployed within the Amazon EKS

Cluster. Jenkins, hosted on an EC2 instance, will pull code

from GitHub, build the artifact, and deploy it within the

Kubernetes cluster. This setup ensures that each code update

triggers an automated CI/CD pipeline, deploying artifacts

from Docker Hub into our EKS cluster.

B. Load Balancing and DNS Configuration:
The application will be accessible via an Application Load

Balancer with a public subnet. Route53 will be used for DNS

management, creating an easy-to-remember domain

(apps.petclinic.com) mapped against the load balancer's

DNS. This setup ensures that end-users can access the

application seamlessly over the internet.

For backend data storage, Amazon RDS will be used,

deployed within a private subnet for enhanced security.

Fig .7. AWS Topology with Multiple Environment

This architecture is designed to facilitate secure

communication between different virtual private clouds

(VPCs) across multiple AWS accounts. This arrangement

allows for isolated and thorough testing in each environment,

ensuring the final application deployed in production is robust

and error-free.

C. Case Study Analysis:
This segment of the research involves a case study with a

hypothetical organization to evaluate the benefits of

automated CI/CD deployment processes. We will conduct a

comparative analysis under two distinct scenarios: one

employing traditional manual deployment methods and the

other utilizing automated deployment strategies.

Case Study: Pet Clinic

Pet Clinic, a UK-based veterinary service provider, faces

operational challenges due to an increase in customer

demand. To streamline their services, they decide to transition

online, offering appointment bookings and product purchases

through their website. This move necessitates the formation

of an IT department tasked with developing a robust online

platform within 60 days.

Scenario 1: Manual Deployment Process

Challenges of Manual Deployment: Adopting a manual

deployment approach with a waterfall strategy, the IT team

encounters several setbacks:

� Development and Testing Delays: Coding and

manual testing processes consume significant time,

leading to delays and inefficiencies.

� Deployment Challenges: The application,

deployed just before the deadline, is riddled with

issues, impacting user experience and functionality.

� Impact Analysis: We will assess how this manual

approach affected various business metrics,

including customer retention, deadline adherence,

and revenue generation.

Scenario 2: Automated Deployment process using CI/CD
pipeline
In this scenario, Pet Clinic's IT team opts for an agile

methodology, integrating an automated Continuous

Integration and Continuous Deployment (CI/CD) pipeline.

This approach is a strategic shift from the traditional waterfall

model, aiming to enhance efficiency, reduce time-to-market,

and improve the overall quality of the software deployment

process.

Sprint-Based Development Approach:
� Minimum Viable Product (MVP): The team plans

to release the application in multiple sprints, with the

first sprint focusing on deploying a basic yet

functional MVP. This approach allows for early

feedback and iterative improvements.

179

� Multiple Environment Setup: To ensure thorough

testing and quality assurance, the team sets up three

distinct environments: Development (Dev), Pre-

Production (Pre-Pod), and Production (Prod). Each

environment serves a specific purpose in the testing

and deployment lifecycle.

� Sprint Duration and Objectives: Each sprint spans

20 days, within which a set of features is developed,

tested, and prepared for release. The objective is to

incrementally build upon the MVP, adding features

and enhancements in each sprint.

Automated CI/CD Pipeline Implementation:
� Integration with Version Control: The team uses

GitHub for version control, ensuring all code

changes are tracked and managed efficiently.

� Automated Builds with Jenkins: Jenkins,

integrated with GitHub, automates the build process.

Every code commit triggers a new build, ensuring

continuous integration of new features and bug

fixes.

� Quality Checks and Dockerization: SonarQube is

employed to maintain code quality standards. Post

quality checks, the code is packaged into Docker

images, ready for deployment.

� Deployment with Kubernetes and Helm: The

Docker images are deployed into an Elastic

Kubernetes Service (EKS) cluster using Helm

charts. This process is fully automated and managed

through Jenkins, minimizing manual intervention.

Benefits of the Automated Approach:
� Enhanced Speed and Efficiency: The automated

pipeline significantly reduces the time taken from

code commit to deployment, ensuring rapid delivery

of features.

� Improved Quality and Reliability: Continuous

testing in multiple environments ensures that each

release is stable and meets quality standards.

� Increased Customer Satisfaction: The agile

approach, coupled with faster and reliable releases,

leads to enhanced user experience and customer

satisfaction.

� Scalability and Flexibility: The CI/CD pipeline

provides the scalability needed to accommodate

future enhancements and the flexibility to adapt to

changing requirements.

Outcome of the Automated Deployment:

� Timely Project Completion: The project is

completed within the 60-day deadline, with each

sprint successfully delivering its objectives.

� Positive Customer Feedback: The deployed

application receives positive feedback from users,

leading to increased customer retention and

acquisition.

� Business Growth: The successful deployment and

operation of the online platform contribute to the

growth and expansion of Pet Clinic's business.

In summary, this scenario demonstrates the effectiveness of

adopting an agile methodology and an automated CI/CD

pipeline in overcoming the challenges faced in manual

deployment processes. The approach not only meets the

immediate needs of Pet Clinic but also sets a foundation for

continuous improvement and growth.

The study by Nandi et al. [18] offers insights into the broader

implications of automation in the realm of CRM. Their

research underscores the dual role of automation systems as

both facilitators and potential obstacles in achieving success,

suggesting that the strategic integration of technology is

paramount in enhancing business processes and outcomes.

This enriches our discussion on the technological

advancements in Kubernetes, highlighting the importance of

thoughtful technology adoption beyond technical

efficiencies.

The section concludes with a detailed analysis of the lab setup

and the experimental steps. It contrasts the outcomes of

manual versus automated deployment strategies, focusing on

how the latter mitigates drawbacks associated with manual

processes.

V. RESEARCH OUTCOME AND ANALYSIS

The experiment conducted in previous section provided a

clear comparative analysis between manual and automated

deployment strategies. We evaluated the impact of these

strategies on key business metrics, which are summarized in

the table below:

Table 1. Drawback Metrics

Drawback Metrics

Scenario 1: :
Manual

Deployment

Scenario 2:
Automated
Deployment

1) Loss of existing customer

base TRUE FALSE

2) Missing business deadlines TRUE FALSE

3)Losing business revenues TRUE FALSE

4) Slow delivery process than

competitors TRUE FALSE

5) Inefficient delivery model: TRUE FALSE

180

A. Business Impact and Key Performance Indicators
(KPIs):

We now turn our attention to the business or revenue impact

of these deployment strategies, analysing common KPIs and

their fulfilment in both scenarios.

� Customer Satisfaction and Market Reputation:
o Customer satisfaction is crucial for revenue

growth and market reputation. Successful

organizations prioritize customer needs and

satisfaction

� Accuracy and Timeliness:
o Delivering accurate products within the

agreed timeline is essential for business

success. Maintaining on-time delivery is a

key indicator of operational efficiency.

� Quality and Efficiency:
o Delivering high-quality products and

services on the first attempt minimizes

waste, effort, and cost, contributing to

overall business efficiency.

Now Let us understand what the impact for both of our

scenarios was.

1) Impact on KPIs in Scenario 1, Manual Deployment
Strategy

� Customer First: The application delivered was of

inferior quality, leading to customer dissatisfaction.

� On-timeline Delivery (OTD): Despite meeting the

deadline, the product was plagued with issues,

failing to meet quality standards.

� Right First Time: The application was delivered

with numerous bugs, indicating a failure to meet this

KPI.

2) KPI Fulfilment in Scenario 2, Automated
Deployment Strategy

� Customer First: The automated strategy ensured

high product quality and met customer

requirements, leading to increased satisfaction.

� On-timeline Delivery (OTD): The application was

delivered within the deadline, with superior quality.

� Right First Time: The application fulfilled all user

requirements without issues, indicating success in

this KPI.

This section summarizes the outcomes of the experiment and

their implications from a business perspective. The analysis

of KPIs for both manual and automated deployment scenarios

reveals significant differences in their impact on business

performance. The automated deployment strategy not only

mitigated the drawbacks identified in the manual approach

but also positively influenced key business indicators.

Table 2. KPI Metrics

KPI Metrics Baseline
Scenario

Scenario 1:
Manual

Deployment

Scenario 2:
Automated
Deployment

Customer
First

Moderate

Satisfaction

Slight

Increase

Significant

Increase

On-timeline
Delivery
(OTD)

Frequent Delays Reduced

Delays

Consistent

Timeliness

Right First
Time

Low Success

Rate

Improved

Success

High Success

Rate

The table above encapsulates the overall performance of each

deployment strategy against the defined KPIs, highlighting

the superior outcomes achieved through automated

deployment processes.

VI. CONCLUSION AND FUTURE WORK

This research has comprehensively demonstrated the

significant impact of deployment strategies on business

efficiency, product quality, and customer satisfaction.

Through a detailed comparative analysis between manual and

automated deployment processes, it is evident that the

traditional manual deployment, particularly following a

waterfall strategy, leads to numerous challenges. These

include prolonged delivery times, subpar product quality, and

ultimately, customer dissatisfaction. The experiment

highlighted the lack of strategic planning and efficient testing

in manual processes, resulting in unnoticed bugs and issues in

the production environment.

In stark contrast, the automated deployment process,

structured into multiple sprints and supported by rigorous

testing across various environments, proved to be markedly

more efficient. This approach not only enhanced the quality

of the final product but also significantly improved customer

satisfaction. The automated process, with its strategic

division of development into sprints and comprehensive

testing, ensures the delivery of a high-quality, user-friendly

product.

In the current digital era, where the demand for rapid and

efficient software deployment is continuously escalating,

adopting an automated deployment process is increasingly

beneficial. However, the decision to upgrade to such a system

should be informed by a thorough analysis of both current

capabilities and future business needs. For growing

businesses, the initial investment in automated deployment

systems can lead to substantial long-term operational cost

savings and efficiency improvements. It is crucial for

organizations to consider their present and future growth

trajectories and the potential impact on customers when

deciding on their deployment strategy.

Future Work

181

Looking ahead, there are several avenues for further research

and development in this area:

1. Scalability and Adaptability: Future studies could

focus on the scalability of automated deployment

processes in larger, more complex organizational

structures and diverse operational environments.

2. Integration with Emerging Technologies:
Exploring the integration of automated deployment

processes with emerging technologies like AI and

machine learning could provide insights into further

enhancing efficiency and predictive capabilities in

deployment strategies.

3. Long-Term Impact Study: Conducting a

longitudinal study on organizations that have

transitioned from manual to automated processes

would offer valuable insights into the long-term

impacts, including operational cost analysis and

return on investment.

4. Customization for SMEs: Tailoring automated

deployment strategies for small and medium-sized

enterprises (SMEs), considering their unique

challenges and resource constraints, would be a

valuable area of research.

In conclusion, while the shift to automated deployment

processes presents clear advantages in terms of efficiency and

customer satisfaction, it is imperative for each organization to

conduct comprehensive research to determine the most

effective strategy that aligns with their specific business goals

and market position. The insights gained from this research

provide a strong foundation for organizations looking to

navigate the complexities of modern software deployment in

an increasingly digital world.

REFERENCES

[1] J. Mahboob and J. Coffman, ‘A Kubernetes CI/CD Pipeline with

Asylo as a Trusted Execution Environment Abstraction Framework’, in 2021

IEEE 11th Annual Computing and Communication Workshop and
Conference, CCWC 2021, 2021, pp. 529–535.

[2] T. Rangnau, R. v. Buijtenen, F. Fransen, and F. Turkmen,

‘Continuous Security Testing: A Case Study on Integrating Dynamic
Security Testing Tools in CI/CD Pipelines’, in Proceedings - 2020 IEEE 24th

International Enterprise Distributed Object Computing Conference, EDOC

2020, 2020, pp. 145–154.

[3] M. K. Abhishek, D. R. Rao, and K. Subrahmanyam, ‘Framework
to Deploy Containers using Kubernetes and CI/CD Pipeline’, International

Journal of Advanced Computer Science and Applications, vol. 13, no. 4, pp.

522–526, 2022.
[4] T. F. Dullmann, O. Kabierschke, and A. van Hoorn, ‘StalkCD: A

Model-Driven Framework for Interoperability and Analysis of CI/CD

Pipelines’, in Proceedings - 2021 47th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2021, 2021, pp. 214–223.

[5] R. Parashar, ‘Path to success with CICD pipeline delivery’,

International Journal of Research in Engineering, Science and Management,
vol. 4, no. 6, pp. 271–273, 2021.

[6] S. Haque, Z. Eberhart, A. Bansal, and C. McMillan, ‘Semantic

Similarity Metrics for Evaluating Source Code Summarization’, in IEEE
International Conference on Program Comprehension, 2022, pp. 36–47.

[7] S. Mysari and V. Bejgam, ‘Continuous Integration and

Continuous Deployment Pipeline Automation Using Jenkins Ansible’, in
International Conference on Emerging Trends in Information Technology

and Engineering, ic-ETITE 2020, Institute of Electrical and Electronics

Engineers Inc., Feb. 2020. doi: 10.1109/ic-ETITE47903.2020.239.
[8] K. Purohit, ‘Executing DevOps & CI/CD, Reduce in Manual

Dependency’, IJSDR2009086 International Journal of Scientific

Development and Research, 2020, [Online]. Available: www.ijsdr.org
[9] A. Hemon, B. Lyonnet, F. Rowe, and B. Fitzgerald, ‘From Agile

to DevOps: Smart Skills and Collaborations’, Information Systems Frontiers,

vol. 22, no. 4, pp. 927–945, Aug. 2020, doi: 10.1007/s10796-019-09905-1.
[10] S. M. Mohammad, ‘DevOps automation and Agile methodology’,

Article in SSRN Electronic Journal, 2017, doi: 10.1729/Journal.24060.
[11] A. M. Buttar et al., ‘Optimization of DevOps Transformation for

Cloud-Based Applications’, Electronics 2023, Vol. 12, Page 357, vol. 12, no.

2, p. 357, Jan. 2023, doi: 10.3390/ELECTRONICS12020357.
[12] A. Wahaballa, O. Wahballa, M. Abdellatief, H. Xiong, and Z.

Qin, ‘Toward unified DevOps model’, in Proceedings of the IEEE

International Conference on Software Engineering and Service Sciences,
ICSESS, IEEE Computer Society, Nov. 2015, pp. 211–214. doi:

10.1109/ICSESS.2015.7339039.

[13] J. M. Ali and J. M. Ali, ‘DevOps and continuous
integration/continuous deployment (CI/CD) automation’, Advances in

Engineering Innovation, vol. AEI Vol.4, no. 1, pp. 38–42, Nov. 2023, doi:

10.54254/2977-3903/4/2023031.
[14] H Salameh, ‘The impact of devops automation, controls, and

visibility practices on software continuous deployment and delivery’, in

Proceedings of the 2nd International Conference on Research in, Dec. 2019,
pp. 22–46. Accessed: Jan. 02, 2024. [Online]. Available:

https://www.dpublication.com/wp-content/uploads/2019/09/IME-F793.pdf

[15] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, ‘DevOps’,
IEEE Softw, vol. 33, no. 3, pp. 94–100, May 2016, doi:

10.1109/MS.2016.68.

[16] A. A. Kupale and P. S. Powar, ‘International Journal of Computer
Science and Mobile Computing Azure DevOps The Next Era of Application

Lifecycle Management’, International Journal of Computer Science and

Mobile Computing, vol. 12, no. 7, pp. 1–6, 2023, doi:
10.47760/ijcsmc.2023.v12i07.001.

[17] M. H. Bhattacharya and H. K. Mittal, “Exploring the Performance of

Container Runtimes within Kubernetes Clusters”, IJC, vol. 22, no. 4, pp. 509-
514, Dec. 2023.

[18] V. Tewari Nandi, H. K. Mittal, and V.V.R. Raman, "Automation

Systems: Driver or Inhibitor for Successful CRM," in 2013 Third
International Conference on Advanced Computing & Communication

Technologies, April 2013, doi: 10.1109/ACCT.2013.79.

182

